The asymptotic form for the number of spiral self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L117
(http://iopscience.iop.org/0305-4470/17/3/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:53

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The asymptotic form for the number of spiral self-avoiding walks

S G Whittington
Physical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, UK

Received 6 December 1983

Abstract

We investigate the asymptotic behaviour of the number s_{n} of spiral self-avoiding walks on the square lattice and show that $s_{n} \sim \rho^{\vee n}$ with $\exp \left(\pi / 3^{1 / 2}\right) \leqslant \rho \leqslant \exp \left(2 \pi / 3^{1 / 2}\right)$.

In a recent paper Privman (1983) has introduced a spiral self-avoiding walk model on the square lattice. A spiral self-avoiding walk is a self-avoiding walk with the added constraints that the walk is not allowed to make a left turn. At each step the walk must either continue in the same direction as the last step, or turn right. Privman assumes that the number s_{n} of such walks had the asymptotic form

$$
\begin{equation*}
s_{n} \sim n^{\gamma} \lambda^{n} \tag{1}
\end{equation*}
$$

by analogy with self-avoiding walks not subject to the spiral constrant. From a series analysis study he estimated that $\lambda=1.15 \pm 0.15$.

In this letter we present an argument, based on a connection between s_{n} and the number of certain types of partitions, which indicates that

$$
\begin{equation*}
s_{n} \sim \rho^{\sqrt{ } n} \tag{2}
\end{equation*}
$$

and we derive upper and lower bounds on the value of ρ.
Let w be a self-avoiding walk on the square lattice, with vertices numbered 0,1 , $2, \ldots, n$ having coordinates $\left(x_{k}, y_{k}\right), k=0,1, \ldots, n$, with $x_{0}=y_{0}=0$. Since the walk is self-avoiding all vertices are distinct. If the self-avoiding walk w has no left turns then $w \in S_{n}$. We define the top row of the walk to be the set of vertices with largest x coordinate and the top vertex to be the vertex in the top row having largest y coordinate. Let E_{n} be the subset of S_{n} such that the top vertex of a walk in E_{n} has coordinates $\left(x_{n}, y_{n}\right)$, i.e. the top vertex is also the last vertex in the walk. We write s_{n} and e_{n} for the numbers of members of S_{n} and E_{n}.

We now derive inequalities relating e_{n} and s_{n}. Clearly

$$
\begin{equation*}
e_{n} \leqslant s_{n} . \tag{3}
\end{equation*}
$$

We define T_{n} to be the set of self-avoiding n-step walks with the restriction that no right turns are allowed and F_{n} to be the subset of T_{n} such that the last vertex of the walk is also the top vertex. By symmetry, T_{n} has s_{n} members and F_{n} has e_{n} members.

We now define the subset $S_{n}(m)$ of S_{n} such that $w \in S_{n}(m)$ if
(i) $w \in S_{n}$ and
(ii) the top vertex of w has coordinates $\left(x_{m}, y_{m}\right)$, i.e. if the top vertex of w is the m th vertex of w. The $S_{n}(m)$ are mutually disjoint. If there are $s_{n}(m)$ members of
$S_{n}(m)$ then

$$
\begin{equation*}
s_{n}=\sum_{m=0}^{n} s_{n}(m) \tag{4}
\end{equation*}
$$

For each $w \in E_{m}$ and each $w^{\prime} \in F_{n-m}$, we join the two graphs by translating w^{\prime} so that the graphs coincide at their top vertices. If we reverse the direction of the arrows in w^{\prime} we generate a set of graphs which include all members of $S_{n}(m)$. Hence

$$
\begin{equation*}
s_{n}(m) \leqslant e_{m} e_{n-m}, \quad 0<m<n . \tag{5}
\end{equation*}
$$

Clearly $s_{n}(n) \equiv e_{n}$ and $s_{n}(0)=e_{n}$. Hence

$$
\begin{equation*}
s_{n} \leqslant(n+1) \max _{0 \leqslant m \leqslant n}\left(e_{m} e_{n-m}\right) \tag{6}
\end{equation*}
$$

where $e_{0}=1$.
To investigate the asymptotic behaviour of e_{n} we write k_{1}, k_{2}, \ldots for the number of steps between successive right turns in a walk which has no left turns. This walk is a member of E_{n} if

$$
\begin{equation*}
k_{1}<k_{3}<k_{5}<\ldots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{2}<k_{4}<k_{6}<\ldots \tag{8}
\end{equation*}
$$

We can find a lower bound on e_{n} by looking for the number of walks which obey the more restrictive condition

$$
\begin{equation*}
k_{1}<k_{2}<k_{3} \ldots \tag{9}
\end{equation*}
$$

This is just the number q_{n} of partitions of n into distinct integers. The generating junction of q_{n} is

$$
\begin{equation*}
Q(x)=\sum q_{n} x^{n}=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \ldots \tag{10}
\end{equation*}
$$

and the asymptotic behaviour of q_{n} is

$$
\begin{equation*}
\log q_{n} \sim \pi \sqrt{n / 3} \tag{11}
\end{equation*}
$$

(Hardy and Ramanujan 1917). Hence

$$
\begin{equation*}
e_{n} \geqslant q_{n} \sim \exp (\pi \sqrt{n / 3}) \tag{12}
\end{equation*}
$$

To derive an upper bound on e_{n} we first note that (7) and (8) define a product of two partitions. If we write $q_{n, m}$ for the number of partitions of n into exactly m distinct integers then

$$
\begin{equation*}
e_{n}=\sum_{l} \sum_{m}\left(q_{l, m} q_{n-l, m}+q_{l, m} q_{n-l, m-1}\right) \leqslant \sum_{l} q_{l} q_{n-l} \tag{13}
\end{equation*}
$$

Then $e_{n} \leqslant \phi_{n}$ where

$$
\begin{equation*}
\sum_{n} \phi_{n} x^{n}=Q(x)^{2}=\prod_{N=1}^{\infty}\left(1+x^{N}\right)^{2} \tag{14}
\end{equation*}
$$

Following Hardy and Ramanujan (1917) one can show that

$$
\begin{equation*}
\log \phi_{n} \sim 2 \sqrt{c n} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
c=2 \int_{0}^{1} \frac{\log (1+t)}{t} \mathrm{~d} t=\pi^{2} / 6 \tag{16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
e_{n} \leqslant \phi_{n} \sim \exp (\pi \sqrt{2 n / 3}) \tag{17}
\end{equation*}
$$

From (3) and (12) we have

$$
\begin{equation*}
s_{n} \geqslant q_{n} \sim \exp (\pi \sqrt{n / 3}) \tag{18}
\end{equation*}
$$

and from (6) and (17)

$$
\begin{equation*}
s_{n} \leqslant(n+1) \max _{0 \leqslant m \leqslant n}\left(\phi_{m} \phi_{n-m}\right) \sim \exp (2 \pi \sqrt{n / 3}) . \tag{19}
\end{equation*}
$$

We have been unable to prove that $\lim _{n \rightarrow \infty} n^{-1 / 2} \log s_{n}$ exists but (18) and (19) strongly suggest that

$$
\begin{equation*}
s_{n}=\rho^{\sqrt{ } n+0(\vee n)} \tag{20}
\end{equation*}
$$

with $6.1337 \ldots \leqslant \rho \leqslant 37.62 \ldots$. This asymptotic behaviour is quite different from that of the number of 'unrestricted' self-avoiding walks.

The author would like to thank John Wilker and David Gaunt for helpful conversations, John Rowlinson and John Hammersley for their hospitality at Oxford and NSERC of Canada for financial support.

References

